w1100n
This site is best viewed in Google Chrome
6/11/2013 12:20

Condition 将 Object 监视器方法(wait、notify 和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。下面将之前写过的一个线程通信的例子替换成用Condition实现(Java线程(三)),代码如下:

[code lang=java]
public class ThreadTest2 {
public static void main(String[] args) {
final Business business = new Business();
new Thread(new Runnable() {
@Override
public void run() {
threadExecute(business, "sub");
}
}).start();
threadExecute(business, "main");
}
public static void threadExecute(Business business, String threadType) {
for(int i = 0; i < 100; i++) {
try {
if("main".equals(threadType)) {
business.main(i);
} else {
business.sub(i);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
class Business {
private boolean bool = true;
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
public /*synchronized*/ void main(int loop) throws InterruptedException {
lock.lock();
try {
while(bool) {
condition.await();//this.wait();
}
for(int i = 0; i < 100; i++) {
System.out.println("main thread seq of " + i + ", loop of " + loop);
}
bool = true;
condition.signal();//this.notify();
} finally {
lock.unlock();
}
}
public /*synchronized*/ void sub(int loop) throws InterruptedException {
lock.lock();
try {
while(!bool) {
condition.await();//this.wait();
}
for(int i = 0; i < 10; i++) {
System.out.println("sub thread seq of " + i + ", loop of " + loop);
}
bool = false;
condition.signal();//this.notify();
} finally {
lock.unlock();
}
}
}
[/code]

在Condition中,用await()替换wait(),用signal()替换notify(),用signalAll()替换notifyAll(),传统线程的通信方式,Condition都可以实现,这里注意,Condition是被绑定到Lock上的,要创建一个Lock的Condition必须用newCondition()方法。

这样看来,Condition和传统的线程通信没什么区别,Condition的强大之处在于它可以为多个线程间建立不同的Condition,下面引入API中的一段代码,加以说明。

[code lang=java]
class BoundedBuffer {
final Lock lock = new ReentrantLock();//锁对象
final Condition notFull = lock.newCondition();//写线程条件
final Condition notEmpty = lock.newCondition();//读线程条件

final Object[] items = new Object[100];//缓存队列
int putptr/*写索引*/, takeptr/*读索引*/, count/*队列中存在的数据个数*/;

public void put(Object x) throws InterruptedException {
lock.lock();
try {
while (count == items.length)//如果队列满了
notFull.await();//阻塞写线程
items[putptr] = x;//赋值
if (++putptr == items.length) putptr = 0;//如果写索引写到队列的最后一个位置了,那么置为0
++count;//个数++
notEmpty.signal();//唤醒读线程
} finally {
lock.unlock();
}
}

public Object take() throws InterruptedException {
lock.lock();
try {
while (count == 0)//如果队列为空
notEmpty.await();//阻塞读线程
Object x = items[takeptr];//取值
if (++takeptr == items.length) takeptr = 0;//如果读索引读到队列的最后一个位置了,那么置为0
–count;//个数–
notFull.signal();//唤醒写线程
return x;
} finally {
lock.unlock();
}
}
}
[/code]

这是一个处于多线程工作环境下的缓存区,缓存区提供了两个方法,put和take,put是存数据,take是取数据,内部有个缓存队列,具体变量和方法说明见代码,这个缓存区类实现的功能:有多个线程往里面存数据和从里面取数据,其缓存队列(先进先出后进后出)能缓存的最大数值是100,多个线程间是互斥的,当缓存队列中存储的值达到100时,将写线程阻塞,并唤醒读线程,当缓存队列中存储的值为0时,将读线程阻塞,并唤醒写线程,这也是ArrayBlockingQueue的内部实现。下面分析一下代码的执行过程:
1. 一个写线程执行,调用put方法;

    2. 判断count是否为100,显然没有100;

    3. 继续执行,存入值;

    4. 判断当前写入的索引位置++后,是否和100相等,相等将写入索引值变为0,并将count+1;

    5. 仅唤醒读线程阻塞队列中的一个;

    6. 一个读线程执行,调用take方法;

    7. ……

    8. 仅唤醒写线程阻塞队列中的一个。

    这就是多个Condition的强大之处,假设缓存队列中已经存满,那么阻塞的肯定是写线程,唤醒的肯定是读线程,相反,阻塞的肯定是读线程,唤醒的肯定是写线程,那么假设只有一个Condition会有什么效果呢,缓存队列中已经存满,这个Lock不知道唤醒的是读线程还是写线程了,如果唤醒的是读线程,皆大欢喜,如果唤醒的是写线程,那么线程刚被唤醒,又被阻塞了,这时又去唤醒,这样就浪费了很多时间。

在java.util.concurrent包中,有两个很特殊的工具类,Condition和ReentrantLock,使用过的人都知道,ReentrantLock(重入锁)是jdk的concurrent包提供的一种独占锁的实现。它继承自Dong Lea的 AbstractQueuedSynchronizer(同步器),确切的说是ReentrantLock的一个内部类继承了AbstractQueuedSynchronizer,ReentrantLock只不过是代理了该类的一些方法,可能有人会问为什么要使用内部类在包装一层? 我想是安全的关系,因为AbstractQueuedSynchronizer中有很多方法,还实现了共享锁,Condition(稍候再细说)等功能,如果直接使ReentrantLock继承它,则很容易出现AbstractQueuedSynchronizer中的API被无用的情况。

言归正传,今天,我们讨论下Condition工具类的实现。

ReentrantLock和Condition的使用方式通常是这样的:

[code lang=java]
public static void main(String[] args) {
final ReentrantLock reentrantLock = new ReentrantLock();
final Condition condition = reentrantLock.newCondition();

Thread thread = new Thread((Runnable) () -> {
try {
reentrantLock.lock();
System.out.println("我要等一个新信号" + this);
condition.wait();
}
catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("拿到一个信号!!" + this);
reentrantLock.unlock();
}, "waitThread1");

thread.start();

Thread thread1 = new Thread((Runnable) () -> {
reentrantLock.lock();
System.out.println("我拿到锁了");
try {
Thread.sleep(3000);
}
catch (InterruptedException e) {
e.printStackTrace();
}
condition.signalAll();
System.out.println("我发了一个信号!!");
reentrantLock.unlock();
}, "signalThread");

thread1.start();
}
[/code]

运行后,结果如下:

我要等一个新信号lock.ReentrantLockTest$1@a62fc3
我拿到锁了
我发了一个信号!!
拿到一个信号!!
可以看到,

Condition的执行方式,是当在线程1中调用await方法后,线程1将释放锁,并且将自己沉睡,等待唤醒,

线程2获取到锁后,开始做事,完毕后,调用Condition的signal方法,唤醒线程1,线程1恢复执行。

以上说明Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备( signal 或者 signalAll方法被带调用)时 ,这些等待线程才会被唤醒,从而重新争夺锁。

那,它是怎么实现的呢?

首先还是要明白,reentrantLock.newCondition() 返回的是Condition的一个实现,该类在AbstractQueuedSynchronizer中被实现,叫做newCondition()

public Condition newCondition() { return sync.newCondition(); }
它可以访问AbstractQueuedSynchronizer中的方法和其余内部类(AbstractQueuedSynchronizer是个抽象类,至于他怎么能访问,这里有个很奇妙的点,后面我专门用demo说明 )

现在,我们一起来看下Condition类的实现,还是从上面的demo入手,

为了方便书写,我将AbstractQueuedSynchronizer缩写为AQS

当await被调用时,代码如下:

public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter(); // 将当前线程包装下后,
// 添加到Condition自己维护的一个链表中。
int savedState = fullyRelease(node);// 释放当前线程占有的锁,从demo中看到,
// 调用await前,当前线程是占有锁的

int interruptMode = 0;
while (!isOnSyncQueue(node)) {// 释放完毕后,遍历AQS的队列,看当前节点是否在队列中,
    // 不在 说明它还没有竞争锁的资格,所以继续将自己沉睡。
    // 直到它被加入到队列中,聪明的你可能猜到了,
    // 没有错,在singal的时候加入不就可以了?
    LockSupport.park(this);
    if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
        break;
}
// 被唤醒后,重新开始正式竞争锁,同样,如果竞争不到还是会将自己沉睡,等待唤醒重新开始竞争。
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
    interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
    unlinkCancelledWaiters();
if (interruptMode != 0)
    reportInterruptAfterWait(interruptMode);

}
回到上面的demo,锁被释放后,线程1开始沉睡,这个时候线程因为线程1沉睡时,会唤醒AQS队列中的头结点,所所以线程2会开始竞争锁,并获取到,等待3秒后,线程2会调用signal方法,“发出”signal信号,signal方法如下:

public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter; // firstWaiter为condition自己维护的一个链表的头结点,
// 取出第一个节点后开始唤醒操作
if (first != null)
doSignal(first);
}
说明下,其实Condition内部维护了等待队列的头结点和尾节点,该队列的作用是存放等待signal信号的线程,该线程被封装为Node节点后存放于此。

public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
/** First node of condition queue. */
private transient Node firstWaiter;
/** Last node of condition queue. */
private transient Node lastWaiter;
关键的就在于此,我们知道AQS自己维护的队列是当前等待资源的队列,AQS会在资源被释放后,依次唤醒队列中从前到后的所有节点,使他们对应的线程恢复执行。直到队列为空。

而Condition自己也维护了一个队列,该队列的作用是维护一个等待signal信号的队列,两个队列的作用是不同,事实上,每个线程也仅仅会同时存在以上两个队列中的一个,流程是这样的:

线程1调用reentrantLock.lock时,线程被加入到AQS的等待队列中。
线程1调用await方法被调用时,该线程从AQS中移除,对应操作是锁的释放。
接着马上被加入到Condition的等待队列中,以为着该线程需要signal信号。
线程2,因为线程1释放锁的关系,被唤醒,并判断可以获取锁,于是线程2获取锁,并被加入到AQS的等待队列中。
线程2调用signal方法,这个时候Condition的等待队列中只有线程1一个节点,于是它被取出来,并被加入到AQS的等待队列中。 注意,这个时候,线程1 并没有被唤醒。
signal方法执行完毕,线程2调用reentrantLock.unLock()方法,释放锁。这个时候因为AQS中只有线程1,于是,AQS释放锁后按从头到尾的顺序唤醒线程时,线程1被唤醒,于是线程1回复执行。
直到释放所整个过程执行完毕。
可以看到,整个协作过程是靠结点在AQS的等待队列和Condition的等待队列中来回移动实现的,Condition作为一个条件类,很好的自己维护了一个等待信号的队列,并在适时的时候将结点加入到AQS的等待队列中来实现的唤醒操作。

看到这里,signal方法的代码应该不难理解了。

取出头结点,然后doSignal

public final void signal() {
if (!isHeldExclusively()) {
throw new IllegalMonitorStateException();
}
Node first = firstWaiter;
if (first != null) {
doSignal(first);
}
}

private void doSignal(Node first) {
do {
if ((firstWaiter = first.nextWaiter) == null) // 修改头结点,完成旧头结点的移出工作
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) && // 将老的头结点,加入到AQS的等待队列中
(first = firstWaiter) != null);
}

final boolean transferForSignal(Node node) {
/*
* If cannot change waitStatus, the node has been cancelled.
*/
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;

/*
 * Splice onto queue and try to set waitStatus of predecessor to
 * indicate that thread is (probably) waiting. If cancelled or attempt
 * to set waitStatus fails, wake up to resync (in which case the
 * waitStatus can be transiently and harmlessly wrong).
 */
Node p = enq(node);
int ws = p.waitStatus;
// 如果该结点的状态为cancel 或者修改waitStatus失败,则直接唤醒。
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
    LockSupport.unpark(node.thread);
return true;

}
可以看到,正常情况 ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)这个判断是不会为true的,所以,不会在这个时候唤醒该线程。

只有到发送signal信号的线程调用reentrantLock.unlock()后因为它已经被加到AQS的等待队列中,所以才会被唤醒。

总结:

本文从代码的角度说明了Condition的实现方式,其中,涉及到了AQS的很多操作,比如AQS的等待队列实现独占锁功能,不过,这不是本文讨论的重点,等有机会再将AQS的实现单独分享出来。

http://www.importnew.com/9281.html
http://blog.csdn.net/ghsau/article/details/7481142

<< Previous Posts Newer Posts >>
辽ICP备14012896