“服务器三大体系 SMP、NUMA、MPP”

https://blog.csdn.net/ZhipingXi/article/details/78133096

服务器三大体系 SMP、NUMA、MPP

zhipingxi 2017-09-29 13:50:15 2236 收藏 5 分类专栏: Operating System 文章标签: 服务器 系统架构 numa smp mpp

系统架构来看,目前的商用服务器大体可以分为三类

对称多处理器结构(SMP: Symmetric Multi-Processor);

非一致存储访问结构(NUMA: Non-Uniform Memory Access);

海量并行处理结构(MPP: Massive Parallel Processing);

共享存储型多处理机有两种模型

均匀存储器存取 (Uniform-Memory-Access,简称UMA) 模型

非均匀存储器存取 (Nonuniform-Memory-Access,简称NUMA) 模型

SMP(Symmetric Multi-Processor)

所谓对称多处理器结构,是指服务器中多个CPU对称工作,无主次或从属关系。各CPU共享相同的物理内存,每个 CPU访问内存中的任何地址所需时间是相同的,因此SMP也被称为一致存储器访问结构(UMA: Uniform Memory Access)。对SMP服务器进行扩展的方式包括增加内存、使用更快的CPU、增加CPU、扩充I/O(槽口数与总线数)以及添加更多的外部设备(通常是磁盘存储)。

SMP服务器的主要特征是共享,系统中所有资源(CPU、内存、I/O等)都是共享的。也正是由于这种特征,导致了SMP服务器的主要问题,那就是它的扩展能力非常有限。对于SMP服务器而言,每一个共享的环节都可能造成SMP服务器扩展时的瓶颈,而最受限制的则是内存。由于每个CPU必须通过相同的内存总线访问相同的内存资源,因此随着CPU数量的增加,内存访问冲突将迅速增加,最终会造成CPU资源的浪费,使 CPU性能的有效性大大降低。实验证明,SMP服务器CPU利用率最好的情况是2至4个CPU。

图1.SMP服务器CPU利用率状态

NUMA(Non-Uniform Memory Access)

由于SMP在扩展能力上的限制,人们开始探究如何进行有效地扩展从而构建大型系统的技术,NUMA就是这种努力下的结果之一。利用NUMA技术,可以把几十个CPU(甚至上百个CPU)组合在一个服务器内。其CPU模块结构如图2所示: 

图2.NUMA服务器CPU模块结构

NUMA服务器的基本特征是具有多个CPU模块,每个CPU模块由多个CPU(如4个)组成,并且具有独立的本地内存、I/O槽口等。由于其节点之间可以通过互联模块(如称为Crossbar Switch)进行连接和信息交互,因此每个CPU可以访问整个系统的内存(这是NUMA系统与MPP系统的重要差别)。显然,访问本地内存的速度将远远高于访问远地内存(系统内其它节点的内存)的速度,这也是非一致存储访问NUMA的由来。由于这个特点,为了更好地发挥系统性能,开发应用程序时需要尽量减少不同CPU模块之间的信息交互。利用NUMA技术,可以较好地解决原来SMP系统的扩展问题,在一个物理服务器内可以支持上百个CPU。比较典型的NUMA服务器的例子包括HP的Superdome、SUN15K、IBMp690等。

但NUMA技术同样有一定缺陷,由于访问远地内存的延时远远超过本地内存,因此当CPU数量增加时,系统性能无法线性增加。如HP公司发布Superdome服务器时,曾公布了它与HP其它UNIX服务器的相对性能值,结果发现,64路CPU的Superdome (NUMA结构)的相对性能值是20,而8路N4000(共享的SMP结构)的相对性能值是6.3。从这个结果可以看到,8倍数量的CPU换来的只是3倍性能的提升。

MPP(Massive Parallel Processing)

和NUMA不同,MPP提供了另外一种进行系统扩展的方式,它由多个SMP服务器通过一定的节点互联网络进行连接,协同工作,完成相同的任务,从用户的角度来看是一个服务器系统。其基本特征是由多个SMP服务器(每个SMP服务器称节点)通过节点互联网络连接而成,每个节点只访问自己的本地资源(内存、存储等),是一种完全无共享(Share Nothing)结构,因而扩展能力最好,理论上其扩展无限制,目前的技术可实现512个节点互联,数千个CPU。目前业界对节点互联网络暂无标准,如 NCR的Bynet,IBM的SPSwitch,它们都采用了不同的内部实现机制。但节点互联网仅供MPP服务器内部使用,对用户而言是透明的。

在MPP系统中,每个SMP节点也可以运行自己的操作系统、数据库等。但和NUMA不同的是,它不存在异地内存访问的问题。换言之,每个节点内的CPU不能访问另一个节点的内存。节点之间的信息交互是通过节点互联网络实现的,这个过程一般称为数据重分配(Data Redistribution)。

但是MPP服务器需要一种复杂的机制来调度和平衡各个节点的负载和并行处理过程。目前一些基于MPP技术的服务器往往通过系统级软件(如数据库)来屏蔽这种复杂性。举例来说,NCR的Teradata就是基于MPP技术的一个关系数据库软件,基于此数据库来开发应用时,不管后台服务器由多少个节点组成,开发人员所面对的都是同一个数据库系统,而不需要考虑如何调度其中某几个节点的负载。

NUMA与MPP的区别

从架构来看,NUMA与MPP具有许多相似之处: 它们都由多个节点组成,每个节点都具有自己的CPU、内存、I/O,节点之间都可以通过节点互联机制进行信息交互。那么它们的区别在哪里?通过分析下面NUMA和MPP服务器的内部架构和工作原理不难发现其差异所在。

首先是节点互联机制不同,NUMA的节点互联机制是在同一个物理服务器内部实现的,当某个CPU需要进行远地内存访问时,它必须等待,这也是NUMA服务器无法实现CPU增加时性能线性扩展的主要原因。而MPP的节点互联机制是在不同的SMP服务器外部通过I/O 实现的,每个节点只访问本地内存和存储,节点之间的信息交互与节点本身的处理是并行进行的。因此MPP在增加节点时性能基本上可以实现线性扩展。

其次是内存访问机制不同。在NUMA服务器内部,任何一个CPU可以访问整个系统的内存,但远地访问的性能远远低于本地内存访问,因此在开发应用程序时应该尽量避免远地内存访问。在MPP服务器中,每个节点只访问本地内存,不存在远地内存访问的问题。

MPP和SMP、NUMA应用之间的区别

MPP的优势

MPP系统不共享资源,因此对它而言,资源比SMP要多,当需要处理的事务达到一定规模时,MPP的效率要比SMP好。由于MPP系统因为要在不同处理单元之间传送信息,在通讯时间少的时候,那MPP系统可以充分发挥资源的优势,达到高效率。也就是说: 操作相互之间没有什么关系,处理单元之间需要进行的通信比较少,那采用MPP系统就要好。因此,MPP系统在决策支持和数据挖掘方面显示了优势。

SMP的优势

MPP系统因为要在不同处理单元之间传送信息,所以它的效率要比SMP要差一点。在通讯时间多的时候,那MPP系统可以充分发挥资源的优势。因此当前使用的OTLP程序中,用户访问一个中心数据库,如果采用SMP系统结构,它的效率要比采用MPP结构要快得多。

NUMA架构的优势

NUMA架构来看,它可以在一个物理服务器内集成许多CPU,使系统具有较高的事务处理能力,由于远地内存访问时延远长于本地内存访问,因此需要尽量减少不同CPU模块之间的数据交互。显然,NUMA架构更适用于OLTP事务处理环境,当用于数据仓库环境时,由于大量复杂的数据处理必然导致大量的数据交互,将使CPU的利用率大大降低。

数据仓库的选择

哪种服务器更加适应数据仓库环境?这需要从数据仓库环境本身的负载特征入手。众所周知,典型的数据仓库环境具有大量复杂的数据处理和综合分析,要求系统具有很高的I/O处理能力,并且存储系统需要提供足够的I/O带宽与之匹配。而一个典型的OLTP系统则以联机事务处理为主,每个交易所涉及的数据不多,要求系统具有很高的事务处理能力,能够在单位时间里处理尽量多的交易。显然这两种应用环境的负载特征完全不同。

从NUMA架构来看,它可以在一个物理服务器内集成许多CPU,使系统具有较高的事务处理能力,由于远地内存访问时延远长于本地内存访问,因此需要尽量减少不同CPU模块之间的数据交互。显然,NUMA架构更适用于OLTP事务处理环境,当用于数据仓库环境时,由于大量复杂的数据处理必然导致大量的数据交互,将使CPU的利用率大大降低。

相对而言,MPP服务器架构的并行处理能力更优越,更适合于复杂的数据综合分析与处理环境。当然,它需要借助于支持MPP技术的关系数据库系统来屏蔽节点之间负载平衡与调度的复杂性。另外,这种并行处理能力也与节点互联网络有很大的关系。显然,适应于数据仓库环境的MPP服务器,其节点互联网络的I/O性能应该非常突出,才能充分发挥整个系统的性能。

相信梦想是价值的源泉,相信眼光决定未来的一切,相信成功的信念比成功本身更重要,相信人生有挫折没有失败,相信生命的质量来自决不妥协的信念!——I`m geek!


https://www.jianshu.com/p/81233f3c2c14

系统的性能很大程度上依赖于cpu 硬件架构的支持。这里记录一下cpu 常见的三大架构的区别

SMP

SMP (Symmetric Multiprocessing) , 对称多处理器. 顾名思义, 在SMP中所有的处理器都是对等的, 它们通过总线连接共享同一块物理内存,这也就导致了系统中所有资源(CPU、内存、I/O等)都是共享的,当我们打开服务器的背板盖,如果发现有多个cpu的槽位,但是却连接到同一个内存插槽的位置,那一般就是smp架构的服务器,日常中常见的pc啊,笔记本啊,手机还有一些老的服务器都是这个架构,其架构简单,但是拓展性能非常差,从linux 上也能看到:

ls /sys/devices/system/node/# 如果只看到一个node0 那就是smp架构

可以看到只有仅仅一个node,经过大神们的测试发现,2至4个CPU比较适合smp架构。

NUMA

NUMA ( Non-Uniform Memory Access) ,非均匀访问存储模型,这种模型的是为了解决smp扩容性很差而提出的技术方案,如果说smp 相当于多个cpu 连接一个内存池导致请求经常发生冲突的话,numa 就是将cpu的资源分开,以node 为单位进行切割,每个node 里有着独有的core ,memory 等资源,这也就导致了cpu在性能使用上的提升,但是同样存在问题就是2个node 之间的资源交互非常慢,当cpu增多的情况下,性能提升的幅度并不是很高。所以可以看到很多明明有很多core的服务器却只有2个node区。

MPP

MPP (Massive Parallel Processing) ,这个其实可以理解为刀片服务器,每个刀扇里的都是一台独立的smp架构服务器,且每个刀扇之间均有高性能的网络设备进行交互,保证了smp服务器之间的数据传输性能。相比numa 来说更适合大规模的计算,唯一不足的是,当其中的smp 节点增多的情况下,与之对应的计算管理系统也需要相对应的提高。

作者: 钟大發

链接: https://www.jianshu.com/p/81233f3c2c14

來源: 简书

简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

NUMA与SMP

SMP ( Symmetric Multi-Processor ) , 对称多处理器结构

对称多处理器结构,指服务器中多个CPU对称工作,每个CPU访问内存地址所需时间相同。其主要特征是共享,包含对CPU,内存,I/O等进行共享。SMP的优点是能够保证内存一致性,缺点是这些共享的资源很可能成为性能瓶颈,随着CPU数量的增加,每个CPU都要访问相同的内存资源,可能导致内存访问冲突,可能会导致CPU资源的浪费。常用的PC机就属于这种。

NUMA ( Non-Uniform Memory Access )

非一致存储访问,将CPU分为CPU模块,每个CPU模块由多个CPU组成,并且具有独立的本地内存、I/O槽口等,模块之间可以通过互联模块相互访问,访问本地内存的速度将远远高于访问远地内存(系统内其它节点的内存)的速度,这也是非一致存储访问NUMA的由来。NUMA优点是可以较好地解决原来SMP系统的扩展问题,缺点是由于访问远地内存的延时远远超过本地内存,因此当CPU数量增加时,系统性能无法线性增加。

https://stackoverflow.com/questions/11126093/how-do-i-know-if-my-server-has-numa

Box 1, no NUMA:

~$ dmesg | grep -i numa

[ 0.000000] No NUMA configuration found

Box 2, some NUMA:

~$ dmesg | grep -i numa

[ 0.000000] NUMA: Initialized distance table, cnt=8

[ 0.000000] NUMA: Node 4 [0,80000000) + [100000000,280000000) -> [0,280000000)

http://cenalulu.github.io/linux/numa/

NUMA简介

这部分将简要介绍下NUMA架构的成因和具体原理,已经了解的读者可以直接跳到第二节。

为什么要有NUMA

在NUMA架构出现前,CPU欢快的朝着频率越来越高的方向发展。受到物理极限的挑战,又转为核数越来越多的方向发展。如果每个core的工作性质都是share-nothing (类似于map-reduce的node节点的作业属性) ,那么也许就不会有NUMA。由于所有CPU Core都是通过共享一个北桥来读取内存,随着核数如何的发展,北桥在响应时间上的性能瓶颈越来越明显。于是,聪明的硬件设计师们,先到了把内存控制器 (原本北桥中读取内存的部分) 也做个拆分,平分到了每个die上。于是NUMA就出现了!

NUMA是什么

NUMA中,虽然内存直接attach在CPU上,但是由于内存被平均分配在了各个die上。只有当CPU访问自身直接attach内存对应的物理地址时,才会有较短的响应时间 (后称Local Access) 。而如果需要访问其他CPU attach的内存的数据时,就需要通过inter-connect通道访问,响应时间就相比之前变慢了 (后称Remote Access) 。所以NUMA (Non-Uniform Memory Access) 就此得名。